Exercise 15

Write a trial solution for the method of undetermined coefficients. Do not determine the coefficients.

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}+\sin x
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-3 y_{c}^{\prime}+2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-3\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-3 r+2=0
$$

Solve for r.

$$
\begin{gathered}
(r-2)(r-1)=0 \\
r=\{1,2\}
\end{gathered}
$$

Two solutions to the ODE are e^{x} and $e^{2 x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{x}+C_{2} e^{2 x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
y_{p}^{\prime \prime}-3 y_{p}^{\prime}+2 y_{p}=e^{x}+\sin x
$$

Since the inhomogeneous term is the sum of an exponential and a sine, the particular solution would be

$$
y_{p}=A e^{x}+(B \cos x+C \sin x) .
$$

e^{x} already satisfies the complementary solution, though, so an extra factor of x is needed.

$$
y_{p}=A x e^{x}+(B \cos x+C \sin x)
$$

